Synthesis of Monomeric Ruthenium Hydroxo Complexes $(PMe_3)_4Ru(R)(OH)$ (R = H, Me) and a Unique Dimeric Ruthenium Hydroxo-Water Complex [trans-Ru(H)(OH)(DMPE)₂·H₂O]₂

Melinda J. Burn, Michael G. Fickes, John F. Hartwig, Frederick J. Hollander, and Robert G. Bergman*

> Department of Chemistry University of California Berkeley, California 94720

Received February 26, 1993

Hydroxo complexes of transition metals have been postulated as critical intermediates in a number of catalytic reactions involving water as a substrate.¹⁻⁷ However, there exist very few examples of monomeric transition-metal hydroxides.^{1,8–19} Alkyl and hydrido hydroxo complexes are especially rare. We wish to report the syntheses of two monomeric ruthenium hydroxo complexes $(PMe_3)_4Ru(R)(OH)(1, R = H; 2, R = Me)$ prepared via the addition of water to a Ru(II) complex. In addition, we have prepared and structurally characterized a novel ruthenium hydroxo-water complex in which two ruthenium hydrido hydroxo molecules are bound together by two hydrogen-bonded water bridges, [trans-Ru(H)(OH)(DMPE)₂·H₂O]₂ (3).

The (hydrido)hydroxoruthenium complex (PMe₃)₄Ru(H)-(OH) (1) has been prepared via two methods. Cyclometalated hydride $(PMe_3)_3(Me_2PCH_2)Ru(H)$ (4)²⁰ reacted with H₂O at room temperature to form complex 1 in low yield (eq 1). More

conveniently, treatment of $(PMe_3)_4Ru(C_2H_4)^{21}$ (5) with 1 equiv of H_2O at room temperature resulted in the formation of $(PMe_3)_4$ -Ru(H)(OH) (1) (eq 2) in 80% yield by NMR spectroscopy. Due to its high solubility, even at low temperatures, compound 1 was isolated by recrystallization from pentane at -30 °C in only 30%

- Arnold, D. P.; Bennett, M. A. J. Organomet. Chem. 1980, 199, 119.
- Bennett, M. A.; Yoshida, T. J. Am. Chem. Soc. 1978, 100, 1750.
 Bennett, M. A.; Yoshida, T. J. Am. Chem. Soc. 1978, 100, 1750.
 Bennett, M. A.; Yoshida, T. J. Am. Chem. Soc. 1973, 95, 3030.
 Jensen, C. M.; Trogler, W. C. J. Am. Chem. Soc. 1986, 108, 723.
 Jensen, C. M.; Trogler, W. C. Science 1986, 233, 1069.
 Masters, C. Homogeneous Transition Metal Catalysis; Chapman & U. Naw Vork 1981.

- Hall: New York, 1981. (7) Yoshida, T.; Matsuda, T.; Okano, T.; Kitani, T.; Otsuka, S. J. Am. Chem. Soc. 1979, 101, 2027.
 - (8) Bennett, M. A.; Appleton, T. Inorg. Chem. 1978, 17, 739.
 (9) Bryndza, H. E. Chem. Rev. 1988, 88, 1163.
- (10) Cole-Hamilton, D. J.; Young, R. J.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1976, 1995.
- (11) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1989, 111, 2717
- (12) Milstein, D.; Calabrese, J. C.; Williams, I. D. J. Am. Chem. Soc. 1986, 108, 6387.
- (13) Mehrotra, R. C.; Agarwal, S. K.; Singh, Y. P. Coord. Chem. Rev. 1985, 68, 101.
- (14) Ros, R.; Michelin, R. A.; Bataillard, R.; Roulet, R. J. Organomet. Chem. 1978, 161, 75.
- (15) James, B. R.; Preece, M.; Robinson, S. D. ACS Adv. Chem. Ser. 1982, 196, 145.
 - (16) Vaska, L.; J. Peone, J. J. Chem. Soc. D 1971, 418
- (17) Stevens, R. C.; Bau, R.; Milstein, D.; Blum, O.; Koetzle, T. F. J. Chem. Soc., Dalton Trans. 1990, 1429.
- (18) Yoshida, T.; Okano, T.; Otsuka, S. J. Chem. Soc., Dalton Trans. 1976. 993.
- (19) Yoshida, T.; Ueda, Y.; Otsuka, S. J. Am. Chem. Soc. 1978, 100, 3941.
 (20) Werner, H.; Werner, R. J. Organomet. Chem. 1981, 209, C60.
 (21) Wong, W. K.; Chiu, K. W.; Statler, J. A.; Wilkinson, G.; Motevalli,
- M.; Hursthouse, M. B. Polyhedron 1984, 3, 1255.

yield. It was characterized by standard spectroscopic and analytical techniques.²² Addition of excess H_2O (>2 equiv) to hydride 1 resulted in the formation of a white precipitate (6). Spectroscopic and analytical data indicate that this material can be formulated as the hydroxide salt $[(PMe_3)_3Ru(\mu-OH)_3-$ Ru(PMe₃)₃]⁺OH⁻, but we cannot rule out a prototropic isomer containing two hydroxide and one oxo bridges associated with a molecule of water. 23,24

It was hoped that replacement of the ruthenium hydride ligand by an alkyl group would increase the thermal stability of a monomeric hydroxo complex. The methyl hydroxo monomer 2 was formed over 2 days from the room temperature reaction of the cyclometalated complex $(PMe_3)_3(Me_2PCH_2)Ru(Me)^{25}$ (7) with a slight excess (1.5 equiv) of H_2O (eq 3). Compound 2 was

isolated by pentane extraction and purified by crystallization at -30 °C to yield the product in 60% yield. Analysis of the crude reaction mixture showed the hydroxo dimer 6 as a minor side product.

Hydroxo methyl complex 2 was thermally more stable than hydroxo hydride 1. In both cases, thermolysis of a benzene solution of the hydroxo complex led to the formation of a complex mixture containing mainly dimer 6, PMe₃, and OPMe₃. However, 2 did not decompose until 70 °C, whereas hydroxo hydride 1 began to decompose at 45 °C.

In an attempt to obtain an analogue of hydroxo hydride 1 containing a bidentate ligand, $(DMPE)_2Ru(C_2H_4)$ (8) was treated with an excess of H_2O at 90 °C. This led to 3, an unusual ruthenium hydroxo dimer bridged by two hydrogen-bound water molecules (eq 4). Dimer 3 was purified by recrystallization to

yield 28% pure product. Variable-temperature ¹H NMR studies performed on complex 3 indicated an intimate interaction between the two water molecules and the ruthenium-bound OH ligands. At room temperature, a single broad resonance at δ 2.30 (C₆D₆) in the ¹H NMR spectrum demonstrated that the protons on the hydroxide ligands were rapidly exchanging with those on the water molecules. At -92 °C, the exchange process slowed enough on the NMR time scale to distinguish distinct resonances for the

- (22) All spectroscopic and analytical data for isolable complexes have been provided as supplementary material.
- (23) For a similar type of dimer, see: Nutton, A.; Bailey, P. M.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1981, 1997.
- (24) A complex assigned the formula (PMe₃)₆(OH)₄Ru₂ that may be identical to 6 was reported earlier by Wilkinson and co-workers: Jones, R. A.; Wilkinson, G.; Colquohoun, I. J.; McFarlane, W.; Galas, A. M. R.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1980, 2480.

(25) Hartwig, J. H.; Bergman, R. G.; Andersen, R. A. J. Organomet. Chem. 1990, 394, 417.

Figure 1. ORTEP Diagram of $[(DMPE)_2Ru(H)(OH)(\mu-OH_2)]_2$ (3).

hydroxide protons (δ -4.55, THF- d_8) and water protons (δ 5.70, THF- d_8) with an intensity ratio of 1:2.2, respectively.

A suitable single crystal of complex 3 was obtained, and its structure was determined by an X-ray diffraction analysis (Figure 1).²⁶ The X-ray structure shows two 18-electron (DMPE)₂Ru-(H)(OH) moieties bridged by hydrogen-bonding to two water molecules. An unusual aspect of the hydrogen-bonding bridge is that the OH proton is not involved; only the hydrogens of the water molecules form the hydrogen bonds between water and hydroxide. Selected structural data for 3 are given in Table I. The Ru-O bond distances of 2.230(2) Å and Ru-H bond distances of 1.47(3) Å are comparable to those of other known latetransition-metal complexes containing H and OH ligands.¹² The O---O bond distances in complex 3 of 2.758(3) and 2.768(3) Å are slightly longer than O...O bond distances in the related H₃O₂ligands²⁷⁻²⁹ and are indicative of a moderately strong hydrogen bond. We are uncertain as to the actual solution structure of complex 3 at this time. It does not appear to fragment or lose water even at temperatures as high as 70 °C in solution; however, we were able to remove the hydrogen-bound water by molecular sieves, yielding the monomeric trans- $Ru(H)(OH)(DMPE)_2$ (7) (eq 5).

In summary, we have prepared three new examples of ruthenium hydroxo complexes generated from the reaction of

(28) Eldik, R. V.; Roodt, A.; Leipoldt, J. G. Inorg. Chim. Acta 1987, 129, L41.

(29) Galsbol, F.; Larsen, S.; Rasmussen, B.; Springborg, J. Inorg. Chem. 1986, 25, 290.

Table I. Selected Structural Data for $[(DMPE)_2Ru(H)(OH)(\mu-OH_2)]_2$ (3)

interatomic distances (Å)			selected bond angles (deg)			
atom 1	atom 2	distance	atom 1	atom 2	atom 3	angle
Ru	P 1	2.297(1)	P1	Ru	P2	84.36(2)
Ru	P2	2.290(1)	P 1	Ru	P3	178.12(2)
Ru	P3	2.291(1)	P 1	Ru	P4	96.10(2)
Ru	P4	2.295(1)	P 1	Ru	O 1	92.11(5)
Ru	O 1	2.230(2)	P 1	Ru	H(Ru)	88.3(10)
Ru	H(Ru)	1.47(3)	P2	Ru	P3	95.21(2)
			P2	Ru	P4	172.53(2)
O 1	02	2.758(3)	P2	Ru	O 1	91.89(5)
O 1	O2	2.768(3)	P2	Ru	H(Ru)	88.8(10)
O 1	H0	0.61(2)	P3	Ru	P4	84.08(2)
O 1	HW1	1.94(3)	P3	Ru	O 1	89.73(5)
O 1	HW2	2.00(3)	P3	Ru	H(Ru)	89.8(10)
O2	HW1	0.82(3)	P4	Ru	O 1	95.54(5)
O2	HW2	0.78(3)	P4	Ru	H(Ru)	83.8(10)
			01	Ru	H(Ru)	179.3(10)
P 1	C1	1.830(2)				
P 1	C2	1.823(2)	Ru	01	O2	117.09(8)
P 1	C3	1.848(2)	Ru	O 1	O2	134.80(9)
P2	C4	1.848(2)	Ru	01	H0	114.4(27)
P2	C5	1.827(2)	02	01	O2	79.78(7)
P2	C6	1.829(2)	O2	01	H0	100.8(27)
C3	C4	1.525(3)	O2	O 1	H0	101.4(27)
			O 1	O2	01	100.22(7)
			HW1	02	HW2	108.1(27)
			02	HW1	O 1	176.3(32)
			O2	HW2	O 1	168.9(29)
3	3Å Sieves 3 ────					

 H_2O and Ru(II) complexes. The monomeric complexes 1 and 2 have shown some tendency to decompose thermally; in contrast, water-bridged dimer [*trans*- $Ru(H)(OH)(DMPE)_2$ · $H_2O]_2$ (3) is surprisingly resistant toward decomposition. Efforts are currently underway to explore the chemistry of complexes 1 and 2 as well as 3 and its anhydrous form 7.

7

Acknowledgment. We are grateful for financial support of this work from the National Institutes of Health under Grant No. GM-25459.

Supplementary Material Available: Spectroscopic and analytical data for complexes 1, 2, 3, 6, and 7; X-ray diffraction data (ORTEP diagrams, crystal and data collection parameters, positional and anisotropic thermal parameters) for complex 3 (13 pages). This material is provided with the archival edition of the journal, available in many libraries. Alternatively, ordering information is given on any current masthead page.

⁽²⁶⁾ Complex 3 crystallized as triclinic, pale yellow crystals: a = 9.128(1)Å, b = 9.659(2) Å, c = 12.860(2) Å, $\alpha = 74.38(1)^{\circ}$, $\beta = 82.75(1)^{\circ}$, $\gamma = 67.58(1)^{\circ}$, V = 1009.1(2) Å³, T = -90 °C, R = 2.0%, $R_w = 2.42\%$, no. of reflections (F2>3 σ (F2)) = 3985, GOF = 1.467, $R_{\rm all} = 2.68\%$, no. of reflections = 4619.

⁽²⁷⁾ Ardon, M.; Bino, A. Struct. Bonding 1987, 65, 1.